Affiliation:
1. School of Aerospace Engineering, University of Rome “La Sapienza”, 00138 Rome, Italy
Abstract
Thermally induced vibrations usually affect spacecraft equipped with light and slender appendages such as booms, antennas or solar panels. This phenomenon occurs when a thermal shock, resulting from the sudden cooling and warming phases at the entrance and exit from eclipses, triggers mechanical vibrations. The study proposed hereafter concerns the modeling and prediction of jitter of thermal origin in a long and thin plate with a sun-pointing attitude in geostationary orbit. The system’s temperature and dynamics are described by a set of equations expressing the two-way coupling between the thermal bending moment and the shape of the panel. The structure is discretized and reduced to a one-degree-of-freedom simplified model able to identify a mechanism of thermal pumping that could lead to instability. Finally, the results of the analysis are compared with those obtained with a more accurate FEM modelization.