Ground Test and Numerical Simulation of Aerodynamic Interference of the Marsupial UAS

Author:

Li Huadong1,Liu Yiliang1,Li Daochun1,Bie Dawei1ORCID,Kan Zi1ORCID

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

The marsupial unmanned aircraft system (UAS) consists of a large parent unmanned aerial vehicle (UAV) and multiple small children UAVs that can be launched and recovered in the air. The employment of marsupial UAS can expand the mission range of small UAVs and enhance the collaborative capabilities of small UAVs. However, the serious aerodynamic interference between the parent UAV and the child UAV will affect the flight safety during the launch and recovery process. In this paper, the interference characteristics of marsupial UAS is investigated through ground tests and CFD simulation. Ground tests compared the lift and power of the child UAV with and without parent UAV interference in different areas, and the simulation extended the experimental scope. Three specific interference regions above the parent UAV are defined, including the area above the rotors, the area above body and the transition area. In the first two aeras, the variation of the disturbed lift is more than 30% of the child UAV weight. In the transition aera, the child UAV will be subjected to significant lift variations and asymmetric moments. According to the interference characteristics of different regions, the safe flight boundaries and the appropriate paths of children UAVs are proposed.

Funder

the National Key Research and Development Project

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3