Optimization and Improvement of Display Interaction System Based on Complex Command and Control Tasks

Author:

Wang Wei,Hong Xuefeng,Qu Jue,Xu Ning,Chen Tong

Abstract

A complex command and control task was selected as the test task, which included observing the overall and local situation, the interactive operation and situation display of detection equipment, the erection and launch of air defense equipment, and the check and display status. The disadvantages of the traditional two-dimensional display interactive system include poor intuitiveness, insufficient information display dimension and complicated interactive operation. The mixed reality display interaction system can avoid these problems well and has the advantages of good portability and high efficiency, but this display interaction system has the problem of high cognitive load. Therefore, based on the premise of completing the same complex task, how to select and improve the display interaction system has become a problem worthy of urgent research. Based on the same complex command and control task, this paper compared the traditional two-dimensional display interaction system and the mixed reality display interaction system and analyzed the performance and cognitive load of the two systems. It is concluded that when completing the same task, the performance of the mixed reality display interaction system is significantly higher than that of the traditional two-dimensional display interaction system, but the cognitive load is slightly higher than that of the traditional two-dimensional display. Cognitive load was reduced while task performance was improved through multi-channel improvements to the mixed reality display interaction system. Considering the effects of performance and cognitive load, the improved multi-channel mixed reality display interaction system is superior to the unimproved mixed reality display interaction system and the two-dimensional display interaction system. This research provides an improvement strategy for the existing display interaction system and provides a new display interaction mode for future aerospace equipment and multi-target, multi-dimensional command and control tasks in war.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference53 articles.

1. View the information-based battlefield environment system from network-centric warfare (NCW);Zhang,2007

2. From Traditional Local to Global Cyberspace–Slovenian Perspectives on Information Warfare;Prislan;Proceedings of the 7th International Conference on Information Warfare and Security,2011

3. Discussion on some problems of informationized war and weapon equipment informationization;War;Fundam. Natl. Def. Technol.,2010

4. The evolution of war patterns since the Industrial Revolution;Sun;Future Dev.,2016

5. Fog in the fifth dimension: The ethics of cyber-war;Orend,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3