Numerical Investigation on Hybrid Rocket Motors with Star-Segmented Rotation Grain

Author:

Tian Hui,Jiang Xianzhu,Lu Yudong,Liang Yu,Zhu Hao,Cai Guobiao

Abstract

A novel fuel grain configuration comprising two star-segmented grains is proposed. The effect of the rotation, mid-chamber length, and segmented position on the fuel regression rate and the combustion efficiency in hybrid rocket motors with star-segmented grains is investigated in this paper. To this end, 90% hydrogen peroxide (H2O2) and hydroxyl-terminated polybutadiene (HTPB) are selected as the propellant combination in this research. Three-dimensional numerical simulations of the star-segmented grain configuration are conducted. A firing test of a lab-scale hybrid rocket motor was conducted to verify the accuracy of the numerical model, and the errors between simulation data and experimental results are no more than 4.5%. The case without segmented grain configuration is regarded as the base case. The simulation results demonstrate that the combustion flow field structure of the motor could be ameliorated by the segmented rotation grain configuration. Compared with the base case, the rotation of aft-section grain has little effect on the regression rate in the fore-section grain, while the average regression rate in aft-section grain increases, with a maximum increase of 25.04%. The combustion efficiency of the motor with the segmented rotation grain configuration is higher than the base case. Compared with the base case, the combustion efficiency of segmented rotation grain case with mid-chamber length 40 mm and segmented position of 1/2 is raised by 4.06%. The average fuel regression rate and the combustion efficiency of hybrid rocket motors with segmented rotation grains are higher than those in the base case during the entire period of operation, and the combustion efficiency is increased by 1.40–4.21% during the motor operation. The research findings of this paper can provide valuable guidance for the performance improvement of hybrid rocket motors with star grain.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3