Abstract
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up to 99.99% to be obtained in-house. Hydrogen peroxide of 98% concentration (mass-wise) was selected as the workhorse for further space propulsion and space transportation developments. Over the course nearly 10 years of the technology’s evolution, the Lukasiewicz Research Network—Institute of Aviation completed hundreds of subscale hybrid rocket motor and component tests. In 2017, the Institute presented the first vehicle in the world to have demonstrated in-flight utilization for 98% hydrogen peroxide. This was achieved by the ILR-33 AMBER suborbital rocket, which utilizes a hybrid rocket propulsion as the main stage. Since then, three successful consecutive flights of the vehicle have been performed, and flights to the Von Karman Line are planned. The hybrid rocket technology developments are described. Advances in hybrid fuel technology are shown, including the testing of fuel grains. Theoretical studies and sizing of hybrid propulsion systems for spacecraft, sounding rockets and small launch vehicles have been performed, and planned further developments are discussed.
Funder
Lukasiewicz Research Network - Institute of Aviation
Reference114 articles.
1. Hybrid Rocket Propulsion for Future Space Launch;Karabeyoglu,2008
2. On use of hybrid rocket propulsion for suborbital vehicles
3. Review on Hybrid Propellants;Frota;ESA Spec. Publ.,2004
4. CHALLENGES IN THE DEVELOPMENT OF LARGE-SCALE HYBRID ROCKETS
5. A review of hybrid rockets: Present status and future potential;Mukunda;Proc. Indian Acad. Sci. Sect. C Eng. Sci.,1979
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献