A Graph Reinforcement Learning-Based Handover Strategy for Low Earth Orbit Satellites under Power Grid Scenarios

Author:

Yu Haizhi1,Gao Weidong1,Zhang Kaisa2ORCID

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Amidst the escalating need for stable power supplies and high-quality communication services in remote regions globally, due to challenges associated with deploying a conventional power communication infrastructure and its susceptibility to natural disasters, LEO satellite networks present a promising solution for broad geographical coverage and the provision of stable and high-speed communication services in remote regions. Given the necessity for frequent handovers to maintain service continuity, due to the high mobility of LEO satellites, a primary technical challenge confronting LEO satellite networks lies in efficiently managing the handover process between satellites, to guarantee the continuity and quality of communication services, particularly for power services. Thus, there is a critical need to explore satellite handover optimization algorithms. This paper presents a handover optimization scheme that integrates deep reinforcement learning (DRL) and graph neural networks (GNN) to dynamically optimize the satellite handover process and adapt to the time-varying satellite network environment. DRL models can effectively detect changes in the topology of satellite handover graphs across different time periods by leveraging the powerful representational capabilities of GNNs to make optimal handover decisions. Simulation experiments confirm that the handover strategy based on the fusion of message-passing neural network and deep Q-network algorithm (MPNN-DQN) outperforms traditional handover mechanisms and DRL-based strategies in reducing handover frequency, lowering communication latency, and achieving network load balancing. Integrating DRL and GNN into the satellite handover mechanism enhances the communication continuity and reliability of power systems in remote areas, while also offering a new direction for the design and optimization of future power system communication networks. This research contributes to the advancement of sophisticated satellite communication architectures that facilitate high-speed and reliable internet access in remote regions worldwide.

Funder

Beijing Natural Science Foundation-Changping Innovation Joint Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3