Aeroservoelastic Stability Evaluation for Slender Vehicles Based on the Ground Frequency Response Test

Author:

Yu ChangkunORCID,Wu ZhigangORCID,Yang Chao

Abstract

With the increasing bandwidths of servo control systems and decreasing mode frequencies, aeroservoelastic (ASE) stability evaluation has become an essential part of flight vehicle design. However, the theoretical method is limited by the modeling errors of numerical models, and the dry wind tunnel method is limited by the complex design of force controllers. Given these limitations, a novel ASE stability evaluation method for slender vehicles based on the ground frequency response test (FRT) is proposed in this paper. FRTs are implemented for a slender vehicle to obtain the frequency response functions (FRFs) of the real structure and servo control systems. The low-order unsteady aerodynamic FRFs established in physical coordinates are calculated by the quasi-steady aerodynamic derivative method. An ASE open-loop FRF is established for stability evaluation via the Nyquist criterion. Comparison with the theoretical results shows that the proposed method is feasible and accurate for different positions of the inertial measurement unit, different control laws, and different Mach numbers. To deal with the unavoidable influence of hanging supports in the test, an FRF fitting and resynthesis method is used to remove the hanging modes and provide an accurate ASE open-loop FRF with free–free boundary conditions.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3