A Hybrid Game Strategy for the Pursuit of Out-of-Control Spacecraft under Incomplete-Information

Author:

Tang Xu,Ye DongORCID,Luo Sha,Low Kay-Soon,Sun Zhaowei

Abstract

This paper investigates the pursuit problem of out-of-control spacecraft under incomplete-information, and provides new ideas for the disposal of dangerous spacecraft with obstacle avoidance capability. Throughout the pursuit process, the maneuver strategy of the out-of-control spacecraft is unknown, and its possibly unconventional and irregular maneuvers may endanger the safe operation of any other spacecraft on orbit. Based on the differential game theory, complete information game strategy pairs are derived. Then, considering that the control information of the target is unavailable to the pursuer, the target’s maneuver is regarded as the disturbance item. The incomplete information game strategy is derived from the unilateral optimal cost function. Furthermore, the disturbance estimator is designed to identify the missing information of the target. The optimal hybrid game strategy is proposed as an approach to compensate the target maneuver strategy. Simulation study has been conducted and the results have validated that the missing information can be effectively estimated using the estimator. The designed hybrid game strategy can achieve rapid approach, while saving fuel consumption for on-orbit service.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference32 articles.

1. A study of on-orbit spacecraft failures

2. Revisit of the Three-Dimensional Orbital Pursuit-Evasion Game

3. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization;Isaacs,1999

4. Satellite proximate interception vector guidance based on differential games

5. Optimal pursuit/evasion spacecraft trajectories in the hill reference frame;Stupik;Proceedings of the AIAA/AAS Astrodynamics Specialist Conference,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3