Abstract
Aiming at the problem that obstacle avoidance of unmanned aerial vehicles (UAVs) cannot effectively detect obstacles under low illumination, this research proposes an enhancement algorithm for low-light airborne images, which is based on the camera response model and Retinex theory. Firstly, the mathematical model of low-illumination image enhancement is established, and the relationship between the camera response function (CRF) and brightness transfer function (BTF) is constructed by a common parameter equation. Secondly, to solve the problem that the enhancement algorithm using the camera response model will lead to blurred image details, Retinex theory is introduced into the camera response model to design an enhancement algorithm framework suitable for UAV obstacle avoidance. Thirdly, to shorten the time consumption of the algorithm, an acceleration solver is adopted to calculate the illumination map, and the exposure matrix is further calculated via the illumination map. Additionally, the maximum exposure value is set for low signal-to-noise ratio (SNR) pixels to suppress noise. Finally, a camera response model and exposure matrix are used to adjust the low-light image to obtain an enhanced image. The enhancement experiment for the constructed dataset shows that the proposed algorithm can significantly enhance the brightness of low-illumination images, and is superior to other similar available algorithms in quantitative evaluation metrics. Compared with the illumination enhancement algorithm based on infrared and visible image fusion, the proposed algorithm can achieve illumination enhancement without introducing additional airborne sensors. The obstacle object detection experiment shows that the proposed algorithm can increase the AP (average precision) value by 0.556.
Funder
the Interdisciplinary Innovation Fund For Doctoral Students of Nanjing University of Aeronautics and Astronautics
University of Canterbury
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献