Image Quality Enhancement with Applications to Unmanned Aerial Vehicle Obstacle Detection

Author:

Wang Zhaoyang,Zhao DanORCID,Cao Yunfeng

Abstract

Aiming at the problem that obstacle avoidance of unmanned aerial vehicles (UAVs) cannot effectively detect obstacles under low illumination, this research proposes an enhancement algorithm for low-light airborne images, which is based on the camera response model and Retinex theory. Firstly, the mathematical model of low-illumination image enhancement is established, and the relationship between the camera response function (CRF) and brightness transfer function (BTF) is constructed by a common parameter equation. Secondly, to solve the problem that the enhancement algorithm using the camera response model will lead to blurred image details, Retinex theory is introduced into the camera response model to design an enhancement algorithm framework suitable for UAV obstacle avoidance. Thirdly, to shorten the time consumption of the algorithm, an acceleration solver is adopted to calculate the illumination map, and the exposure matrix is further calculated via the illumination map. Additionally, the maximum exposure value is set for low signal-to-noise ratio (SNR) pixels to suppress noise. Finally, a camera response model and exposure matrix are used to adjust the low-light image to obtain an enhanced image. The enhancement experiment for the constructed dataset shows that the proposed algorithm can significantly enhance the brightness of low-illumination images, and is superior to other similar available algorithms in quantitative evaluation metrics. Compared with the illumination enhancement algorithm based on infrared and visible image fusion, the proposed algorithm can achieve illumination enhancement without introducing additional airborne sensors. The obstacle object detection experiment shows that the proposed algorithm can increase the AP (average precision) value by 0.556.

Funder

the Interdisciplinary Innovation Fund For Doctoral Students of Nanjing University of Aeronautics and Astronautics

University of Canterbury

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3