A Robust Reacting Flow Solver with Computational Diagnostics Based on OpenFOAM and Cantera

Author:

Zhou DezhiORCID,Zhang Hongyuan,Yang SuoORCID

Abstract

In this study, we developed a new reacting flow solver based on OpenFOAM (OF) and Cantera, with the capabilities of (i) dealing with detailed species transport and chemistry, (ii) integration using a well-balanced splitting scheme, and (iii) two advanced computational diagnostic methods. First of all, a flaw of the original OF chemistry model to deal with pressure-dependent reactions is fixed. This solver then couples Cantera with OF so that the robust chemistry reader, chemical reaction rate calculations, ordinary differential equations (ODEs) solver, and species transport properties handled by Cantera can be accessed by OF. In this way, two transport models (mixture-averaged and constant Lewis number models) are implemented in the coupled solver. Finally, both the Strang splitting scheme and a well-balanced splitting scheme are implemented in this solver. The newly added features are then assessed and validated via a series of auto-ignition tests, a perfectly stirred reactor, a 1D unstretched laminar premixed flame, a 2D counter-flow laminar diffusion flame, and a 3D turbulent partially premixed flame (Sandia Flame D). It is shown that the well-balanced property is crucial for splitting schemes to accurately capture the ignition and extinction events. To facilitate the understanding on combustion modes and complex chemistry in large scale simulations, two computational diagnostic methods (conservative chemical explosive mode analysis, CCEMA, and global pathway analysis, GPA) are subsequently implemented in the current framework and used to study Sandia Flame D for the first time. It is shown that these two diagnostic methods can extract the flame structure, combustion modes, and controlling global reaction pathways from the simulation data.

Funder

University of Minnesota

3M

UMII MnDRIVE

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3