Affiliation:
1. Department of Aeronautics and Astronautics, Tokyo Metropolitan University, Hino 191-0065, Japan
Abstract
Hybrid rockets are safe and inexpensive; however, boundary-layer combustion poses a problem in achieving a fuel regression rate equivalent to that of solid propellants. The fundamental combustion conditions, such as the fuel regression rate of LT421, a paraffin-based low-melting-point thermoplastic fuel, were investigated using a swirling-flow combustion method. Firing tests were conducted using the oxygen mass flow rate and burn time parameters. The LT fuel exhibited an ignition delay compared to polypropylene, and the pressure increased slowly relative to the thrust. The combustion pressure increased or remained constant with time, suggesting that the fuel regression rate was more dependent on the oxygen mass flow rate than the oxidizer mass flux. The shear force generated in the grain owing to the swirling flow caused fuel-grain separation when the oxygen mass flow rate exceeded 100 g/s. Fuel-grain separation was prevented by modifying the case geometry. The maximum fuel regression rate obtained in the tests was 4.88 mm/s at an oxygen mass flow rate of 190 g/s and mass flux of 72.4 kg/(m2s), which was four times higher than that of polypropylene at the same oxidizer mass flux. The fuel regression rate correlation was obtained using the oxygen mass-flow-rate-based parameter, although further modification was necessary to apply this correlation when the burning time was varied.
Reference53 articles.
1. Chaiverini, M.J., and Kuo, K.K. (2007). Fundamentals of Hybrid Rocket Combustion and Propulsion, AIAA. NASA RP-1311.
2. Essentially Non-explosive propulsion Paving a Way for Fail-Safe Space Transportation;Takahashi;Transact. Jpn. Soc. Aeronaut. Space Sci. Space Technol. Jpn.,2018
3. Virgin Galactic (2023, May 02). Available online: https://www.virgingalactic.com/.
4. Yuasa, S., Yamamoto, K., Hachiya, H., Kitagawa, K., and Oowada, Y. (2001, January 8–11). Development of a Small Sounding Hybrid Rocket with a Swirling-Oxidizer-Type Engine. Proceedings of the 37th AIAA Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA. AIAA Paper 2001-3537.
5. Karabeyoglu, A., Zilliac, G., Castellucci, P., Urbanczyk, P., Inalhan, G., and Cantwell, B. (2003, January 20–23). Flight Demonstration of the High Burning Rate Hydrocarbon-Based Hybrid Rocket Fuels. Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, USA. AIAA Paper 2003-5196.