Abstract
Airport environmental carrying capacity (AECC) provides the fundamental conditions for airport development and operation activities. The prediction of AECC is a necessary condition for planning an appropriate development mode for the airport. This paper studies the dynamic prediction method of the AECC to explore the development characteristics of AECC in different airports. Based on the driving force-pressure-state-response (DPSR) framework, the method selects 17 main variables from economic, social, environmental and operational dimensions, and then combines the drawing of causal loop diagrams and the establishment of system flow diagrams to construct the system dynamics (SD) model of AECC. The predicted values of AECC are obtained through SD model simulation and accelerated genetic algorithm projection pursuit (AGA-PP) model calculation. Considering sustainable development needs, different scenarios are set to analyze the appropriate development mode of the airport. The case study of the Pearl River Delta airports resulted in two main conclusions. First, in the same economic zone, different airports with similar aircraft movements have similar development characteristics of AECC. Second, the appropriate development modes for different airports are different, and the appropriate development modes for the airport in different periods are also different. The case study also proves that the AECC prediction based on SD model and AGA-PP model can realize short-term policy formulation and long-term planning for the airport development mode, and provide decision-making support for relevant departments of airport.
Funder
National Natural Science Foundation of China
the Foundation of the Graduate Innovation Center, Nanjing University of Aeronautics and As-tronautics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献