Study on the Ablation Mechanism of the First Pulse Insulation Layer in a Double-Pulse Solid Rocket Motor

Author:

Zhang Kaining,Wang ChunguangORCID,Tian WeipingORCID

Abstract

In this work, numerical simulation and experimental research were carried out on ablation mechanism of the first pulse (I pulse) insulation layer in a double-pulse solid rocket motor (SRM). Firstly, based on the internal thermal environment of the typical double pulse SRM, the internal flow field in combustion chamber of the double-pulse SRM with soft type pulse separation device (PSD) under the second pulse (Ⅱ pulse) working condition was numerically simulated. The results showed that the main reason for the difference of ablation in I pulse insulation layer was the difference of gas phase velocity. Secondly, based on the simulation analysis results, the experimental system for ablation of insulation layer was developed, and the ablation performance experiments under two gas phase velocities were carried out. It was found that a brittle carbonized layer had been formed on the surface of the insulation layer after the completion of I pulse work. In addition, at the beginning of Ⅱ pulse work, the suddenly generated gas flow made a denudation effect on the carbonized layer, which consumed a part of the carbonized layer. After the carbonized layer was peeled off, the gas flow continued to ablate the matrix of the insulation layer. Finally, the simulation analysis of the ablation process of the insulation layer under two gas phase velocities was carried out. The results showed that the velocity of the fuel gas is the main factor affecting the ablation rate of the insulation layer, which was consistent with the experimental results. It is proven that the model can be used to estimate the ablation amount of insulation of solid rocket motor. The conclusion can provide a significant reference for the internal heat protection design of the double-pulse SRM.

Funder

the Application Innovation Plan Project of Aerospace Science and Technology Group

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3