Abstract
Space situational awareness (SSA) plays an important role in maintaining space advantages. Task planning is one of the key technologies in SSA to allocate multiple tasks to multiple satellites, so that a satellite may be allocated to supervise multiple space objects, and a space object may be supervised by multiple satellites. This paper proposes a hierarchical and distributed task-planning framework for SSA systems with focus on fast and effective task planning customized for SSA. In the framework, a global task-planner layer performs satellite and object clustering, so that satellites are clustered into multiple unique clusters on the basis of their positions, while objects are clustered into multiple possibly intersecting clusters, hence allowing for a single object to be supervised by multiple satellites. In each satellite cluster, a local task planner performs distributed task planning using the contract-net protocol (CNP) on the basis of the position and velocity of satellites and objects. In addition, a customized discrete particle swarm optimization (DPSO) algorithm was developed to search for the optimal task-planning result in the CNP. Simulation results showed that the proposed framework can effectively achieve task planning among multiple satellites and space objects. The efficiency and scalability of the proposed framework are demonstrated through static and dynamic orbital simulations.
Funder
Science and Technology on Space Intelligent Control Laboratory
Reference32 articles.
1. Distributed onboard mission planning for multi-satellite systems
2. Multi-robot task allocation: A review of the state-of-the-art;Khamis,2015
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献