Topology Perception and Relative Positioning of UAV Swarm Formation Based on Low-Rank Optimization

Author:

Di Chengliang1,Guo Xiaozhou1ORCID

Affiliation:

1. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050000, China

Abstract

In a satellite-denied environment, a swarm of drones is capable of achieving relative positioning and navigation by leveraging the high-precision ranging capabilities of the inter-drone data link. However, because of factors such as high drone mobility, complex and time-varying channel environments, electromagnetic interference, and poor communication link quality, distance errors and even missing distance values between some nodes are inevitable. To address these issues, this paper proposes a low-rank optimization algorithm based on the eigenvalue scaling of the distance matrix. By gradually limiting the eigenvalues of the observed distance matrix, the algorithm reduces the rank of the matrix, bringing the observed distance matrix closer to the true value without errors or missing data. This process filters out distance errors, estimates and completes missing distance elements, and ensures high-precision calculations for subsequent topology perception and relative positioning. Simulation experiments demonstrate that the algorithm exhibits significant error filtering and missing element completion capabilities. Using the F-norm metric to measure the relative deviation from the true value, the algorithm can optimize the relative deviation of the observed distance matrix from 11.18% to 0.25%. Simultaneously, it reduces the relative positioning error from 518.05 m to 35.24 m, achieving robust topology perception and relative positioning for the drone swarm formation.

Funder

National Natural Science Foundation: Semantic Situation Construction of Unmanned Battlefield Based on Multi source Heterogeneous Image Analysis

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3