An Effort to Use a Solid Propellant Engine Arrangement in the Moon Soft Landing Problem

Author:

Obreque ElíasORCID,Díaz MarcosORCID

Abstract

This paper presents a control design strategy for the soft-landing problem on the Moon using solid propellant engines (SPEs). While SPEs have controllability issues and issues relating to the fact that they cannot be restarted, they are characterized by their reliability, simplicity, and cost-effectiveness. Consequently, our main contribution is to tackle this disadvantage by formulating a 1-dimensional landing optimization problem using an array of SPEs in a CubeSat platform, which is analyzed for different numbers of engines in the array and for three types of propellant grain cross-section (PGCS). The engines and control parameters are optimized by a genetic algorithm (GA) due to the non-linearity of the problem and the uncertainties of the state variables. Two design approaches for control are analyzed, where the robust design based on the uncertainties of the variables shows the best performance. The results of Monte Carlo simulations were used to demonstrate the effectiveness of the robust design, which decreases the impact velocity as the number of SPEs increases. Using an arrangement of ten SPEs, the landing was at −2.97 m/s with a standard deviation of 0.99 m/s; using sixteen SPEs, the landing was at −2.04 m/s with a standard deviation of 0.48 m/s. Both have regressive PGCS.

Funder

Agencia Nacional de Investigación y Desarrollo

United States Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference31 articles.

1. Beyond Earth: A Chronicle of Deep Space Exploration, 1958–2016,2018

2. Development of an Attitude Control and Propellant Settling System for the aA5ME Upper Stage;Kajon;Proceedings of the Space Propulsion Conference,2014

3. Historical perspective - Viking Mars Lander propulsion

4. The First Viking Mission to Mars

5. Efficient solid rocket propulsion for access to space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3