System Noise Assessment and Uncertainty Analysis of a Conceptual Supersonic Aircraft

Author:

Akatsuka Junichi,Ishii Tatsuya

Abstract

This paper describes a system noise assessment of a conceptual supersonic aircraft called the NASA 55t Supersonic Technology Concept Aeroplane (STCA), its prediction uncertainty, and related validation tests. A landing and takeoff noise (LTO) standard for supersonic aircraft is needed to realize future supersonic aircraft, and the noise impact due to the introduction of future supersonic aircraft should be analyzed to develop the standard. System noise assessments and uncertainty analyses using Monte Carlo simulation (MCS) were performed. The predicted noise levels showed good agreement with the prior study for both the benchmark case and statistics of the predictions. The predicted cumulative noise level satisfied the ICAO Chapter 4 noise standard, and its standard deviation was approximately 2 EPNdB. Moreover, sensitivity analysis using the obtained datasets revealed strong correlations with the takeoff noise for jet noise, fan exhaust noise at the flyover measurement point, and airframe trailing edge noise. Further understanding of these extracted factors, which were estimated to have a significant impact on the LTO noise, will be beneficial for the development of LTO noise standards and the design of supersonic aircraft.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3