Multi-Domain Network Slicing in Satellite–Terrestrial Integrated Networks: A Multi-Sided Ascending-Price Auction Approach

Author:

Jiang Weiwei1ORCID,Zhan Yafeng1,Xiao Xiaolong2

Affiliation:

1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

2. State Grid Jiangsu Electric Power Co., Ltd., Research Institute, Nanjing 211103, China

Abstract

With the growing demand for massive access and data transmission requests, terrestrial communication systems are inefficient in providing satisfactory services. Compared with terrestrial communication networks, satellite communication networks have the advantages of wide coverage and support for massive access services. Satellite–terrestrial integrated networks are indispensable parts of future B5G/6G networks. Challenges arise for implementing and operating a successful satellite–terrestrial integrated network, including differentiated user requirements, infrastructure compatibility, limited resource constraints, and service provider incentives. In order to support diversified services, a multi-domain network slicing approach is proposed in this study, in which network resources from both terrestrial and satellite networks are combined to build alternative routes when serving the same slice request as virtual private networks. To improve the utilization efficiency of limited resources, slice admission control is formulated as a mechanism design problem. To encourage participation and cooperation among different service providers, a multi-sided ascending-price auction mechanism is further proposed as a game theory-based solution for slice admission control and resource allocation, in which multiple strategic service providers maximize their own utilities by trading bandwidth resources. The proposed auction mechanism is proven to be strongly budget-balanced, individually rational, and obviously truthful. To validate the effectiveness of the proposed approach, real-world historical traffic data are used in the simulation experiments and the results show that the proposed approach is asymptotically optimal with the increase in users and competitive with the polynomial-time optimal trade mechanism, in terms of admission ratio and service provider profit.

Funder

Science and Technology Project of the State Grid Corporation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3