A Web-Based Decision Support System for Aircraft Dispatch and Maintenance

Author:

Koornneef HemmoORCID,Verhagen Wim J. C.ORCID,Curran Richard

Abstract

Aircraft dispatch involves determining the optimal dispatch option when an aircraft experiences an unexpected failure. Currently, maintenance technicians at the apron have limited access to support information and finding the right information in extensive maintenance manuals is a time-consuming task, often leading to technically induced delays. This paper introduces a novel web-based prototype decision support system to aid technicians during aircraft dispatch decision-making and subsequent maintenance execution. A system architecture for real-time dispatch decision support is established and implemented. The developed system is evaluated through a case study in an operational environment by licensed maintenance technicians. The system fully automates information retrieval from multiple data sources, performs alternative identification and evaluation for a given fault message, and provides the technician with on-site access to relevant information, including the related maintenance tasks. The case study indicates a potential time saving of up to 98% per dispatch decision. Moreover, it enables digitalization of the—currently mostly paper-based—dispatch decision process, thereby reducing logistics and paper waste. The prototype is the first to provide operational decision support in the aircraft maintenance domain and addresses the lack of correlation between theory and practice often found in decision support systems research by providing a representative case study. The developed custom parser for SGML-based documents enables efficient identification and extraction of relevant information, vastly contributing to the overall reduction of the decision time.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A web-based decision support system (DSS) for hydrogen refueling station location and supply chain optimization;International Journal of Hydrogen Energy;2023-12

2. A Decision-Making Framework for the KC-46A Maintenance Program;2023 Annual Reliability and Maintainability Symposium (RAMS);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3