Frequency Domain Design Method of the Aeroengine Fuel Servo Constant Pressure Difference Control System with High Performance

Author:

Zhao WenshuaiORCID,Wang Xi,Long Yifu,Zhou Zhenhua,Tian Linhang

Abstract

The constant pressure difference regulating mechanism is widely used in aeroengine fuel servo metering systems, and it almost decides the metering precision. However, the design theory and design method of the available constant pressure difference regulating mechanism are unclear, and it is difficult to follow the high stability, high accuracy, and high robustness requirements of the modern aeroengine fuel servo metering system. In this paper, the design theory of the constant pressure difference regulating mechanism is revealed, and it indicates that it consists of two basic control units: a state feedback stabilization controller to ensure the asymptotic stability and disturbance rejection performance; and a servo and feed-forward compensator to ensure the asymptotic tracking ability. In addition, based on the frequency domain analysis method, the decisive influences about the control gains of the two control units on the dynamic performance and stability are analyzed. On this basis, a frequency domain design method of the two core control gains is proposed to complete the design task of the closed-loop system. The simulation results show that, under the adverse conditions of 1 MPa strong step disturbance of the inlet pressure and 50 mm2 strong step disturbance of the variable inlet flow area, the steady-state working range of the controlled pressure difference meets 0.92 ± 0.01 MPa, the steady-state error is not more than 1%, the regulation time is not more than 0.01 s, the dynamic overshoot is not more than 10%, and the designed phase margin is more than 70°.

Funder

National Science and Technology Major Project

AECC Sichuan Gas Turbine Establishment Stable Support Project

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference28 articles.

1. Dynamic characteristics analysis of a pressure differential valve;Yang;Aeroengine,2015

2. The analysis and design of hydraulic pressure-reducing valves;Ma;J. Eng. Ind.,1967

3. The establishment of pilot-operated relief valve’s dynamic mathematic model and the dynamic properties analysis;Fan;J. Zheng Zhou Text. Inst.,1997

4. Analysis of a pressure—Compensated flow control valve;Wu;J. Dyn. Syst. Meas. Control.,2007

5. Wen, Y.J. (2002, January 8–10). Analysis of characteristics of oil return differential pressure valve with EASY5. Proceedings of the 11th Symposium on Automatic Engine Control of CAA, Beijing, China.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3