A Real-Time Trajectory Optimization Method for Hypersonic Vehicles Based on a Deep Neural Network

Author:

Wang Jianying,Wu Yuanpei,Liu Ming,Yang Ming,Liang Haizhao

Abstract

Considering the high-efficient trajectory planning requirements for hypersonic vehicles, this paper proposes a real-time trajectory optimization method based on a deep neural network. First, the trajectory optimization model of the hypersonic vehicle reentry phase is developed. The pseudo-spectral method is used to perform the trajectory optimization offline, and multiple optimal trajectory data are obtained. In addition, based on the inherent relationship between the state and control variables of a trajectory, a neural network is established to predict the current control outputs. The sample library of optimal trajectory data is used to train the parameters of the deep neural network to obtain an optimal neural network model. Finally, the simulation verification of the hypersonic vehicle reentry phase is performed. The simulation results show that under the condition of the initial value deviation and environmental interference, the proposed deep learning-based method can achieve a fast generation of hypersonic vehicle optimal trajectories, while achieving the advantages of high computational efficiency and reliability. Compared to traditional trajectory optimization algorithms, the proposed method has the generalization capability that satisfies the accuracy requirements and meets the demands of online real-time trajectory optimization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3