Design and Analysis of MataMorph-3: A Fully Morphing UAV with Camber-Morphing Wings and Tail Stabilizers

Author:

Bishay Peter L.ORCID,Kok James S.,Ferrusquilla Luis J.,Espinoza Brian M.,Heness Andrew,Buendia Antonio,Zadoorian Sevada,Lacson Paul,Ortiz Jonathan D.,Basilio Ruiki,Olvera Daniel

Abstract

Conventional aircraft use discrete flight control surfaces to maneuver during flight. The gaps and discontinuities of these control surfaces generate drag, which degrades aerodynamic and power efficiencies. Morphing technology aims to replace conventional wings with advanced wings that can change their shape to control the aircraft with the minimum possible induced drag. This paper presents MataMorph-3, a fully morphing unmanned aerial vehicle (UAV) with camber-morphing wings and tail stabilizers. Although previous research has presented successful designs for camber-morphing wing core mechanisms, skin designs suffered from wrinkling, warping, or sagging problems that result in reduced reliability and aerodynamic efficiency. The wing and tail stabilizers of MataMorph-3 feature hybrid ribs with solid leading-edge sections that house servomotors, and compliant trailing-edge sections with integrated flexible ribbons that are connected to the servomotors to camber-morph the ribs. Thin laminated carbon fiber composite skin slides smoothly over the compliant rib sections upon morphing, guided by innovative trailing-edge sliders and skin-supporting linkage mechanisms strategically located between the ribs. Sample prototypes were built and tested to show the effectiveness of the proposed design solutions in enabling smooth camber-morphing. The proposed design provides a better alternative to stretchable skins in morphing airplane designs through the concept of skin sliding.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3