A Study on Disrupted Flight Recovery Based on Logic-Based Benders Decomposition Method

Author:

Peng Yunfang1,Hu Xuechun1,Xia Beixin1

Affiliation:

1. School of Management, Shanghai University, Shanghai 200444, China

Abstract

Aiming at the disrupted flight recovery problem, this paper established a mixed-integer programming model based on the resource assignment model to minimize the recovery cost. To deal with the large-scale examples, the Logic-Based Benders decomposition algorithm is designed to divide the problem into a master problem and sub-problems. The algorithm uses MIP in the master problem to determine flight cancellations and aircraft replacements. In the sub-problems, MIP or CP is used to determine the departure time of delayed flights. Later, incorporating sectional constraints into the main problem and iterating until an optimal solution is obtained. Furthermore, the added cutting plane constraint in the iterations of the Benders decomposition algorithm are strengthened to eliminate more inferior solutions. By comparing the results of CPLEX, the Logic-Based Benders decomposition algorithm, and the enhanced Benders decomposition algorithm, it is verified that the improved Benders decomposition algorithm can solve large-scale examples more efficiently with a faster time and fewer iterations.

Funder

Shanghai Pujiang Program

Ministry of education, humanities and social sciences research project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3