A Flexible Dynamic Reliability Simulation Approach for Predicting the Lifetime Consumption of Extravehicular Spacesuits during Uncertain Extravehicular Activities

Author:

Sun Yuehang1,Li Yun-Ze1ORCID,Yuan Man1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, 37 College Rd., Haidian District, Beijing 100191, China

Abstract

The special use environment and uncertainty of extravehicular activities (EVAs) make it difficult to predict the lifetime consumption of extravehicular spacesuits in the traditional way. This paper presents a flexible reliability dynamic simulation model to predict the life loss of extravehicular spacesuits. Based on the images of traditional reliability change curves, new life assessment parameters, based on geometric analysis, are proposed as indicators of spacesuit life loss. Multiple influence factors are used to correct the spacesuit failure rate. The results of the study show that mission intensity is the main factor affecting the health status of the spacesuit, and the higher the mission intensity, the higher the failure rate. Additionally, the more frequently the spacesuit is used, the more times it is available, however, the overall service time will decrease. Concentrating on the mission at an early stage would lead to a significant and irreversible loss of life. Reliability is higher when more intense work is scheduled later in the EVA. Therefore, it is important to rationalize the mission duration, frequency, and work intensity of spacesuits. These reliability models predict the health status of the spacesuit and assist in optimizing the scheduling of EVA.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3