3D Printing for Space Habitats: Requirements, Challenges, and Recent Advances

Author:

Hedayati Reza1ORCID,Stulova Victoria1

Affiliation:

1. Department of Aerospace Structures and Materials (ASM), Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

Heavily resource-reliant transportation and harsh living conditions, where humans cannot survive without a proper habitat, have prevented humans from establishing colonies on the Moon and Mars. Due to the absence of an atmosphere, potential habitats on the Moon or Mars require thick and strong structures that can withstand artificially produced internal pressure, potential meteoroid strikes, and the majority of incoming radiation. One promising way to overcome the noted challenges is the use of additive manufacturing (AM), also known as 3D printing. It allows producing structures from abundant materials with minimal material manipulation as compared to traditional constructing techniques. In addition to constructing the habitat itself, 3D printing can be utilized for manufacturing various tools that are useful for humans. Recycling used-up tools to compensate for damaged or unfunctional devices is also possible by melting down a tool back into raw material. While space 3D printing sounds good on paper, there are various challenges that still have to be considered for printing-assisted space missions. The conditions in space are drastically different from those on Earth. This includes factors such as the absence of gravity, infinitesimal pressure, and rapid changes in temperature. In this paper, a literature study on the prospects of additive manufacturing in space is presented. There are a variety of 3D printing techniques available, which differ according to the materials that can be utilized, the possible shapes of the final products, and the way solidification of the material occurs. In order to send humans to other celestial bodies, it is important to account for their needs and be able to fulfill them. An overview of requirements for potential space habitats and the challenges that arise when considering the use of additive manufacturing in space are also presented. Finally, current research progress on 3D printing Lunar and Martian habitats and smaller items is reviewed.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference73 articles.

1. Space colonisation;Gale;Aerosp. Am.,2008

2. Burelle, A. (October, January 27). Mining the moon: A first step in harnessing extraterrestrial resources. Proceedings of the 61th International Astronautical Congress IAC, Prague, Czech Republic.

3. Opportunities and constraints of closed man-made ecological systems on the moon;Homeck;Adv. Space Res.,1994

4. Akins, F.R., Connors, M.M., and Harrison, A.A. (1986). Living Aloft: Human Requirements for Extended Spaceflight.

5. Jozuka, E. (2018, June 13). 3d Printing in Space Is Really Hard. Available online: https://motherboard.vice.com/enus=article=4x3pzn=3d-printing-in-space-is-really-hard.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3