Geometric Optimization of Blunt Bodies with Aerodisk and Opposing Jet for Wave Drag and Heat Reduction

Author:

Hamza Muhammad,Khan Saima BukhatORCID,Maqsood AdnanORCID

Abstract

The use of passive, active, or hybrid flow control techniques is often investigated to reduce the acoustic signature, wave drag, and aerodynamic heating associated with the supersonic flow regime. This research explores passive and hybrid flow control techniques to achieve an optimal reduction in wave drag and aerodynamic heating on a blunt body using an aerodisk. While passive techniques use one or two aerospikes, hybrid techniques employ opposing jets and aerospikes. Numerical analysis is performed using Reynolds-Averaged Navier–Stokes (RANS) equations to analyze the bodies’ flow field. The statistical technique, Design of Experiments (DOE), is combined with Response Surface Method (RSM) to find the optimal configuration for four cases by generating design space. Two cases were considered for the optimization: single aerospike with and without opposing jet and double aerospike with and without opposing jet. Variables used for the design of the aerodisks were spike length and diameter, while the response variables were wave drag and normalized heat flux. The current study has established an optimum relationship between spike length and aerospike diameter located in front of the main blunt body for both single and double aerospikes. The study’s results suggest that a double aerodisk configuration is more beneficial for reducing drag and heat flux at supersonic speed than a single aerodisk. By incorporating an opposing jet at a pressure ratio of 0.8 from the frontal aerodisk to the spiked blunt body, it can reduce drag and heat flux by 86% and 95%, respectively. Finally, numerical verification is performed for statistically optimized designs.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3