On the Generalization Capability of a Data-Driven Turbulence Model by Field Inversion and Machine Learning

Author:

Nishi Yasunari1,Krumbein Andreas1,Knopp Tobias1,Probst Axel1,Grabe Cornelia1

Affiliation:

1. Center for Computer Applications in AeroSpace Science and Engineering, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstr. 10, 37073 Göttingen, Germany

Abstract

This paper discusses the generalizability of a data-augmented turbulence model with a focus on the field inversion and machine learning approach. It is highlighted that the augmented model based on two-dimensional (2D) separated airfoil flows gives poor predictive capability for a different class of separated flows (NASA wall-mounted hump) compared to the baseline model due to extrapolation. We demonstrate a sensor-based approach to localize the data-driven model correction to tackle this generalizability issue. Furthermore, the applicability of the augmented model to a more complex aeronautical three-dimensional case, the NASA Common Research Model configuration, is studied. Observations on the pressure coefficient predictions and the model correction field suggest that the present 2D-based augmentation is to some extent applicable to a three-dimensional aircraft flow.

Funder

German Federal Ministry for Economic Affairs and Climate Action

DLR internal aeronautical program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3