Can the Orbital Debris Disease Be Cured Using Lasers?

Author:

Scharring Stefan1,Kästel Jürgen1

Affiliation:

1. Institute of Technical Physics, German Aerospace Center (DLR), Pfaffenwaldring 38–40, 70569 Stuttgart, Germany

Abstract

Ground-based high-power lasers are, in principle, able to de-orbit any kind of space debris object from the low Earth orbit (LEO) by remotely inducing laser-ablative momentum. However, the assessment of efficiency and operational safety depends on many factors, like atmospheric constraints or the risk of debris disintegration during irradiation. We analyze laser momentum for a great variety of target geometries and sizes and—for the first time in a large-scale simulation—include thermal constraints in the laser irradiation configuration. Using a coherently coupled 100 kJ laser system at 1030 nm wavelength and a 5 ns pulse duration in an optimized pointing elevation angle range, the pulse frequency should amount to less than 10 Hz to prevent fragment meltdown. For mechanically intact payloads or rocket bodies, repetition rates should be even lower. Small debris fragments sized between 10 and 40 cm can be de-orbited by employing around 100 to 400 station passes with head-on irradiation, while objects exceeding 2 m typically require far more than 1000 irradiations for de-orbit. Hence, laser-based debris removal cannot be considered a prime space sustainability measure to tackle the highest-risk large debris, yet it can provide the remediation of a multitude of small-sized debris using small networks of globally distributed laser sites.

Funder

institutional funding

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference45 articles.

1. Collision Frequency of Artificial Satellites: The Creation of a Debris Belt;Kessler;J. Geophys. Res.,1978

2. Laser Ranging and Nudging in Space Debris Traffic Management;Phipps;Sens. Transducers J.,2022

3. Colvin, T.J., Karcz, J., and Wusk, G. (2023). Cost and Benefit Analysis of Orbital Debris Remediation, NASA Headquarters, Office of Technology, Policy, and Strategy.

4. (2023, March 17). Clearspace-1. Available online: https://www.esa.int/Space_Safety/ClearSpace-1.

5. (2023, March 17). Astroscale Selects Rocket Lab to Launch Phase I of JAXA’s Debris Removal Demonstration Project. Available online: https://astroscale.com/astroscale-selects-rocket-lab-to-launch-phase-i-of-jaxas-debris-removal-demonstration-project/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3