Abstract
Unless a segregated airspace and the corresponding clearances can be afforded, flight testing of remotely piloted aircraft is often done near the ground and within visual line-of-sight. In addition to the increased exposure to turbulence, this setup also limits the available time for test manoeuvres on each pass, especially for subscale demonstrators with a relatively high wing loading and flight speed. A suitable testing procedure, efficient excitation signals and a robust system identification method are therefore fundamental. Here, the authors use ground-based flight control augmentation to inject multisine signals with low correlation between the different inputs. Focusing on initial flight-envelope expansion, where linear regression is common, this paper also describes the improvement of an existing frequency-domain method by using an instrumental variable (IV) approach to better handle turbulence and measurement noise and to enable real-time identification analysis. Both simulations and real flight tests on a subscale demonstrator are presented. The results show that the combination of multisine input signals and the enhanced frequency-domain method is an effective way of improving flight testing of remotely piloted aircraft in confined airspace.
Reference21 articles.
1. Similitude Requirements and Scaling Relationships as Applied to Model Testing;Wolowicz,1979
2. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA’s Aerospace Programs;Chambers,2009
3. Flight Testing the X-36—The Test Pilot’s Perspective;Walker,1997
4. SCALING: Wind Tunnel to Flight
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献