A Method for Improved Flight Testing of Remotely Piloted Aircraft Using Multisine Inputs

Author:

Larsson Roger,Sobron AlejandroORCID,Lundström David,Enqvist MartinORCID

Abstract

Unless a segregated airspace and the corresponding clearances can be afforded, flight testing of remotely piloted aircraft is often done near the ground and within visual line-of-sight. In addition to the increased exposure to turbulence, this setup also limits the available time for test manoeuvres on each pass, especially for subscale demonstrators with a relatively high wing loading and flight speed. A suitable testing procedure, efficient excitation signals and a robust system identification method are therefore fundamental. Here, the authors use ground-based flight control augmentation to inject multisine signals with low correlation between the different inputs. Focusing on initial flight-envelope expansion, where linear regression is common, this paper also describes the improvement of an existing frequency-domain method by using an instrumental variable (IV) approach to better handle turbulence and measurement noise and to enable real-time identification analysis. Both simulations and real flight tests on a subscale demonstrator are presented. The results show that the combination of multisine input signals and the enhanced frequency-domain method is an effective way of improving flight testing of remotely piloted aircraft in confined airspace.

Funder

VINNOVA

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference21 articles.

1. Similitude Requirements and Scaling Relationships as Applied to Model Testing;Wolowicz,1979

2. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA’s Aerospace Programs;Chambers,2009

3. Flight Testing the X-36—The Test Pilot’s Perspective;Walker,1997

4. SCALING: Wind Tunnel to Flight

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3