Combustion Characteristics of HTPB-Based Hybrid Rocket Fuels: Using Nickel Oxide as the Polymer Matrix Pyrolysis Catalyst

Author:

Yu Hongsheng12,Yu Xiaodong12ORCID,Gao Hongwei12,DeLuca Luigi T.13ORCID,Zhang Wei12ORCID,Shen Ruiqi12ORCID

Affiliation:

1. Institute of Space Propulsion, Nanjing University of Science and Technology, Nanjing 210094, China

2. Micro-Nano Energetic Devices Key Laboratory of MIIT, Nanjing 210094, China

3. Space Propulsion Laboratory (SPLab), Department of Aerospace Science and Technology, Politecnico di Milano, 20156 Milan, Italy

Abstract

The slow regression rate induced by the high pyrolysis difficulty has limited the application and development of hydroxyl-terminated polybutadiene (HTPB)-based fuels in hybrid rocket propulsion. Nickel oxide (NiO) shows the possibility of increasing the regression rate of HTPB-based fuels by catalyzing the pyrolysis process of the polymer matrix in our previous investigation; hence, this paper studies the NiO particles in the thermal decomposition and combustion of HTPB fuel grains. The DSC/TG test shows that NiO can intensely decrease the thermal stability of HTPB, and the catalytic effect of NiO is mainly reflected in the final decomposition stages of polybutadiene components. 5 wt% NiO enhances the regression rate by 19.4% and 13.7% under an oxygen mass flux of 50 kg/m2s and 150 kg/m2s, respectively. Further investigation shows that NiO particles will also cause the reduction of combustion heat and the agglomeration at the regressing surface while catalyzing the pyrolysis process, improving the thermal conductivity, and promoting the radiative heat transfer of the HTPB-based fuels; thus, more NiO additive (5 wt% < [NiO] ≤ 10 wt%) does not lead to a faster regression rate in HTPB-based fuels. This study demonstrates the catalytic effect of NiO on the polymer matrix for HTPB-based fuels, showing the attractive application prospects of this additive in HTPB-containing fuel grains.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3