Power Balance Strategies in Steady-State Simulation of the Micro Gas Turbine Engine by Component-Coupled 3D CFD Method

Author:

Xu Yibing1ORCID,Gao Lei1,Cao Ruizhe1,Yan Chong1ORCID,Piao Ying1ORCID

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Abstract

Currently, an increasing number of designers have begun to pay attention to a new paradigm for evaluating the performance with full engine 3-dimensional computational fluid dynamics (3D CFD) simulations. Compared with the traditional component-based performance simulation method component-based performance simulation method (‘component-matched’ method), this novel ‘component-coupled’ method can evaluate the overall performance of the engine more physically and obtain more detailed flow field parameters simultaneously. Importantly, the power balance iteration should be introduced to the novel method to satisfy the constraints of the coaxial components for the gas turbine engine at steady state. By carrying out the ‘component-matched’ simulation and the ‘component-coupled’ simulation for a micro turbojet engine, the necessity of introducing the power balance iteration was discussed in this paper. The influence of steady-state co-working constraints on the engine performance was analysed and strategies for power balance iteration were proposed. To verify the capability and feasibility of this method, not only the co-working state but also the windmill state of the gas turbine engine were simulated by using the 3D CFD method considering power balance iteration. The results show that the power balance strategy proposed in this paper can converge the aerodynamic parameters as well as the power residual in a robust way.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3