A Novel Digital Twin Framework for Aeroengine Performance Diagnosis

Author:

Wang Zepeng1,Wang Ye1ORCID,Wang Xizhen1,Yang Kaiqiang1,Zhao Yongjun1ORCID

Affiliation:

1. Department of Aeronautics & Astronautics, Fudan University, Shanghai 200433, China

Abstract

Aeroengine performance diagnosis technology is essential for ensuring flight safety and reliability. The complexity of engine performance and the strong coupling of fault characteristics make it challenging to develop accurate and efficient gas path diagnosis methods. To address these issues, this study proposes a novel digital twin framework for aeroengines that achieves the digitalization of physical systems. The mechanism model is constructed at the component level. The data-driven model is built using a particle swarm optimization–extreme gradient boosting algorithm (PSO-XGBoost). These two models are fused using the low-rank multimodal fusion method (LWF) and combined with the sparse stacked autoencoder (SSAE) to form a digital twin framework of the engine for performance diagnosis. Compared to methods that are solely based on mechanism or data, the proposed digital twin framework can effectively use mechanism and data information to improve the accuracy and reliability. The research results show that the proposed digital twin framework has an error rate of 0.125% in predicting gas path parameters and has a gas path fault diagnosis accuracy of 98.6%. Considering that the degradation cost of a typical flight mission for only one aircraft engine after 3000 flight cycles is approximately USD 209.5, the proposed method has good economic efficiency. This framework can be used to improve engine reliability, availability, and efficiency, and has significant value in engineering applications.

Funder

Research Start-up Fund of Fudan University

AECC Commercial Aircraft Engine Co., Ltd.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3