Martian Combustion-Powered Fixed-Wing UAVs: An Introductory Investigation and Analysis

Author:

Ross Samuel A.,White Amanda E.,Andresen Adam,Alam Shah Saud,Depcik ChristopherORCID

Abstract

The Martian topography needs to be investigated in greater detail for human habitations, and this can be accomplished faster using unmanned aerial vehicles (UAVs). In this regard, the RQ-11B Raven appears suitable for remote sensing and topography-mapping applications on Mars, due to its popularity in surveillance and reconnaissance applications on Earth. As a result, this study investigates the flight of this UAV in the Martian atmosphere with the assumptions that it employs an NACA S7012 airfoil and its electric propulsion technology is replaced with a four-stroke oxy-methane fueled Saito FG-11 internal combustion engine (ICE). This ICE is estimated to supply 367.8 W resulting in an engine speed of 6891 revolutions per minute. Based on this speed, the UAV must fly at least 72 m/s (Re = 18,100) at a 5° angle of attack to support flight under calm conditions. To achieve this speed will be difficult; thus, a weather balloon or German V1-style launch system should be employed to launch the UAV successfully. Furthermore, the UAV must operate below 165 m/s (Re = 41,450) to prevent transonic conditions. Finally, the vehicle’s fuel and oxidizer tanks can be refueled using an in situ methane and oxygen production system, enabling its sustainable use on Mars.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference48 articles.

1. Evidence for Martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover

2. NASA’s Mars Helicopter Was Supposed to Fly Five Times. It’s Flown 28 https://www.washingtonpost.com/technology/2022/05/13/nasa-ingenuity-mars-helicopter-perseverance/

3. Survey on Unmanned Aerial Vehicle for Mars Exploration: Deployment Use Case

4. High-Flying Mini-Sniffer RPV-Mars Bound;Reed;Astronaut. Aeronaut.,1978

5. Daedalon: A Revolutionary Morphing Spacecraft Design for Planetary Exploration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3