Towards Determining the Contrail Cirrus Efficacy

Author:

Ponater MichaelORCID,Bickel Marius,Bock LisaORCID,Burkhardt Ulrike

Abstract

Contrail cirrus has been emphasized as the largest individual component of aircraft climate impact, yet respective assessments have been based mainly on conventional radiative forcing calculations. As demonstrated in previous research work, individual impact components can have different efficacies, i.e., their effectiveness to induce surface temperature changes may vary. Effective radiative forcing (ERF) has been proposed as a superior metric to compare individual impact contributions, as it may, to a considerable extent, include the effect of efficacy differences. Recent climate model simulations have provided a first estimate of contrail cirrus ERF, which turns out to be much smaller, by about 65%, than the conventional radiative forcing of contrail cirrus. The main reason for the reduction is that natural clouds exhibit a substantially lower radiative impact in the presence of contrail cirrus. Hence, the new result suggests a smaller role of contrail cirrus in the context of aviation climate impact (including proposed mitigation measures) than assumed so far. However, any conclusion in this respect should be drawn carefully as long as no direct simulations of the surface temperature response to contrail cirrus are available. Such simulations are needed in order to confirm the power of ERF for assessing contrail cirrus efficacy.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3