Numerical Optimization of Electromagnetic Performance and Aerodynamic Performance for Subsonic S-Duct Intake

Author:

Wang Bin,Wang Qiang

Abstract

In order to improve the performance of subsonic unmanned aerial vehicle (UAV), a knapsack S-duct intake has been designed. The influences of an S-bend diffuser on aerodynamic performance and electromagnetic performance were analyzed firstly. The viscous flow field has been simulated by solving Favre averaged Navier–Stokes equations using a shear stress transport (SST) k-ω turbulence model. The surface current has been simulated by solving Maxwell equations using a multi-level fast multipole method (MLFMM). The multi-objective optimization of the S-duct intake was studied by using the diffuser as the optimized object. The parametric expression of the diffuser model was realized using the fourth order function geometric representation technique. The efficient model based on the Kriging model and non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) were used to accelerate the optimization progress. By analyzing the results of an optimal intake chosen from the Pareto front, the total pressure distortion (TPD) index DC60 has decreased by 0.24 at the designed Mach number of 0.9, and the average Radar Cross Section (RCS) has decreased by 2db at the frequency of 3GHz. The optimized S-duct intake could have both excellent aerodynamic performance and electromagnetic performance at various complex conditions.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference21 articles.

1. RCS reduction of a cylindrical cavity by dielectric coatin;Lee;Proceedings of the International Symposium on Antennas and Propagation Digest,1986

2. Performance variations in high aspect ratio subsonic diffusers due to geometric constraints in supersonic tactical aircraft inlet installations;Syberg;Proceedings of the AIAA/SAE/ASME 16th Joint Propulsion Conference,1980

3. An experimental investigation of S-duct diffusers for high-speed prop-Fans;Little;Proceedings of the AIAA/SAE/ASME 18th Joint Propulsion Conference,1982

4. Experimental investigation of the effects of wall suction and blowing on the performance of highly offset diffusers;Ball;Proceedings of the AIAA/SAE/ASME 19th Joint Propulsion Conference,1983

5. Subsonic diffuser development of advanced tactical aircraft;Kitchen;Proceedings of the AIAA/SAE/ASME 19th Joint Propulsion Conference,1983

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3