Multi-Electric Aero Engine Control and Hardware-in-the-Loop Verification with Starter Generator Coordination

Author:

Fang Jun1ORCID,Zhang Tianhong1,Cen Zhaohui2,Tsoutsanis Elias2

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Propulsion and Space Research Center, Technology Innovation Institute, Abu Dhabi P.O. Box 9639, United Arab Emirates

Abstract

The starter generator, characterized by controllable starting torque and disturbance in generator load torque, poses challenges for the multi-electric aero engine control. The key to addressing this issue lies in multi-electric aero engine control with the collaboration of a starter generator. Firstly, a multi-electric aero engine model is established, comprising a full-state turbofan engine model to enhance low-speed simulation capability and an external characteristic model of a starter generator to improve real-time simulation capability. Subsequently, the control methods for a multi-electric aero engine with starter generator coordination are proposed in three processes, including the starting process, acceleration/deceleration process, and steady-state process. During the starting process, the acceleration is controlled by coordinating the torque of the starter generator and the fuel of the aero engine. During the acceleration/deceleration process, the fuel limit value is adjusted based on the electrical load of the starter generator. During the steady-state process, the fuel is compensated based on the q-axis current of the starting generator in response to load torque disturbance. Finally, hardware-in-the-loop simulation experiments are conducted for the control of a multi-electric aero engine. The results show that the coordination reduces the oscillation of the acceleration during the startup of a multi-electric aero engine, enhancing its ability to resist disturbances from electrical load fluctuations during power generation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3