Numerical Investigation on Aerodynamic Characteristics of an Active Jets-Matrix Serving as Pitch Control Surface

Author:

Tian SongyanORCID,Duan Yanhui,Chen Hongbo

Abstract

To facilitate future Hypersonic Flight Vehicle (HFV) implementation with high maneuverability throughout its reentry trajectory, an Active Jets-Matrix (AJM) is designed to serve as the flapless pitch control surface. The AJM consists of four control groups composed in total of 48 supersonic nozzles. The AJM aims to utilize the jet flow-interaction-induced additional control moment to improve the control efficiency during atmospheric entry. A comparative research method is employed to study the eight simulation cases for three different HFV configurations (baseline, mechanical control surface with 30° deflection, and the AJM configuration) and two AJM control moment adjustment strategies (nozzle chamber pressure regulation and discretized nozzle group on–off control). A conventional in-house computational fluid dynamics (CFD) solver with the two-equation SST turbulence model is employed to undertake the simulation tasks. Simulation results indicate that: (a) only the AJM configuration is capable of trimming the HFV in pitch channel; (b) nonlinearity exists between the augmentation moment and the specific control variable from respective adjustment strategies; (c) the chamber pressure regulation strategy bears higher overall efficiency, while the discretized control strategy induces more intense local jet-flow interaction. With a maximum control moment augmentation of 1.58, the AJM presents itself as a competitive candidate for future HFV flapless control methods.

Funder

Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference47 articles.

1. Fluidic Flow Control Effectors for Flight Control

2. Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid;Coanda;U.S. Patent,1936

3. Circulation Control for High Lift and Drag Generation on STOL Aircraft

4. Development of advanced circulation control wing high lift airfoils

5. Flight Dynamic Simulation of a Flapless Flight Control UAV;Buonanno;Proceedings of the 25th Congress of the International Council of the Aeronautical Sciences,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3