Predicting Air Traffic Congestion under Uncertain Adverse Weather

Author:

Nunez-Portillo Juan1ORCID,Valenzuela Alfonso1ORCID,Franco Antonio1ORCID,Rivas Damián1

Affiliation:

1. Department of Aerospace Engineering, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 41092 Seville, Spain

Abstract

This paper presents an approach for integrating uncertainty information in air traffic flow management at the tactical phase. In particular, probabilistic methodologies to predict sector demand and sector congestion under adverse weather in a time horizon of 1.5 h are developed. Two sources of uncertainty are considered: the meteorological uncertainty inherent to the forecasting process and the uncertainty in the take-off time. An ensemble approach is adopted to characterize both uncertainty sources. The methodologies rely on a trajectory predictor able to generate an ensemble of 4D trajectories that provides a measure of the trajectory uncertainty, each trajectory avoiding the storm cells encountered along the way. The core of the approach is the statistical processing of the ensemble of trajectories to obtain probabilistic entry and occupancy counts of each sector and their congestion status when the counts are compared to weather-dependent capacity values. A new criterion to assess the risk of sector overload, which takes into account the uncertainty, is also defined. The results are presented for a historical situation over the Austrian airspace on a day with significant convection.

Funder

SESAR Joint Undertaking

R&D&i project

European Union

Publisher

MDPI AG

Reference43 articles.

1. Niarchakou, S., and Sfyroeras, M. (2022). ATFCM Users Manual, EUROCONTROL Network Manager Directorate. Technical Report.

2. Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes;Taszarek;J. Clim.,2020

3. NOAA (2024, February 03). Severe Weather 101: Thunderstorm Types, Available online: https://www.nssl.noaa.gov/education/svrwx101/thunderstorms/types/.

4. Berberi, L. (2023, July 25). Maltempo a Milano, la Grandine Buca il Muso Dell’aereo Diretto a New York: Volo Dirottato a Roma. Available online: https://www.corriere.it/economia/consumi/23_luglio_24/maltempo-milano-grandine-buca-muso-dell-aereo-diretto-new-york-volo-dirottato-roma-8495fe2c-2a32-11ee-84ae-fdab1efa7b6b.shtml.

5. Predicting the likelihood of airspace user rerouting to mitigate air traffic flow management delay;Dalmau;Transp. Res. Part C Emerg. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3