Thermal-Aeroelastic Investigation of a Hypersonic Panel Vibration Based on a Developed MMC Method

Author:

Zhang Sheng1,Bai Yuguang123,Zhang Youwei1,Zhao Dan4ORCID

Affiliation:

1. School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116023, China

2. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116023, China

3. Advanced Technology for Aerospace Vehicles of Liaoning Province, Dalian University of Technology, Dalian 116023, China

4. Department of Mechanical Engineering, College of Engineering, University of Canterbury, Christchurch 8041, New Zealand

Abstract

Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus thermal dynamic influence on panel vibration. A traditional panel structure was modelled and analyzed. After analyzing its dynamic characteristics of panel flutter, thermal effects were also included to propose thermal-aeroelastic analysis results of the present hypersonic panel. Then, a MMC (Moving Morphable Component) method was proposed to suggest dynamic optimization for such panel structures. The proposed method can provide arbitrary frequency control result in order to suggest a newly generated panel structure. Based on the optimal structures, dynamic analysis was presented again to verify the effectiveness of the optimization method. So aero-thermo-dynamic characteristics of the optimal panel structures could be investigated. It can be seen that the computational results presented significantly improved panel flutter results. The proposed dynamic optimization method can be employed for the design of panel structures versus high combustion temperatures or hypersonic aerodynamics.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3