Multiscale Aeroelastic Optimization Method for Wing Structure and Material

Author:

Li Keyu1,Yang Chao1,Wang Xiaozhe2ORCID,Wan Zhiqiang1,Li Chang1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

2. Institute of Unmanned System, Beihang University, Beijing 100191, China

Abstract

Microstructured materials, characterized by their lower weight and multifunctionality, have great application prospects in the aerospace field. Optimization methods play a pivotal role in enhancing the design efficiency of both macrostructural and microstructural topology (MMT) for aircraft. This paper proposes a multiscale aeroelastic optimization method for wing structure and material considering realistic aerodynamic loads for large aspect ratio wings with significant aeroelastic effects. The aerodynamic forces are calculated by potential flow theory and the aeroelastic equilibrium equations are solved through finite element method. The parallel design of the wing MMT is achieved by utilizing the optimization criterion (OC) method based on sensitivity information. The optimization results indicate that wing elastic effects reinforce the outer section of the wing structure compared with the optimization results obtained under rigid aerodynamic forces. As the optimization constraints become more rigorous, the optimization results show that the components with larger loads are strengthened. Furthermore, the method presented in this paper can effectively optimize the wing structure under complex boundary conditions to achieve a reasonable stiffness distribution in the wing.

Funder

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3