Ernie-Gram BiGRU Attention: An Improved Multi-Intention Recognition Model for Air Traffic Control

Author:

Pan Weijun1,Jiang Peiyuan1,Wang Zhuang1,Li Yukun1,Liao Zhenlong1

Affiliation:

1. College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China

Abstract

In recent years, the emergence of large-scale pre-trained language models has made transfer learning possible in natural language processing, which overturns the traditional model architecture based on recurrent neural networks (RNN). In this study, we constructed a multi-intention recognition model, Ernie-Gram_Bidirectional Gate Recurrent Unit (BiGRU)_Attention (EBA), for air traffic control (ATC). Firstly, the Ernie-Gram pre-training model is used as the bottom layer of the overall architecture to implement the encoding of text information. The BiGRU module that follows is used for further feature extraction of the encoded information. Secondly, as keyword information is very important in Chinese radiotelephony communications, the attention layer after the BiGRU module is added to realize the extraction of keyword information. Finally, two fully connected layers (FC) are used for feature vector fusion and outputting intention classification vector, respectively. We experimentally compare the effects of two different tokenizer tools, the BERT tokenizer tool and Jieba tokenizer tool, on the final performance of the Bert model. The experimental results reveal that although the Jieba tokenizer tool has considered word information, the effect of the Jieba tokenizer tool is not as good as that of the BERT tokenizer tool. The final model’s accuracy is 98.2% in the intention recognition dataset of the ATC instructions, which is 2.7% higher than the Bert benchmark model and 0.7–3.1% higher than other improved models based on BERT.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Safety Capacity Building Project of Civil Aviation Administration of China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3