Adaptive Mode Filter for Lamb Wavefield in the Wavenumber-Time Domain Based on Wavenumber Response Function

Author:

Shahrim Muhamad Azim Azhad1ORCID,Chia Chen Ciang2ORCID,Ramli Hafiz Rashidi3,Harmin Mohammad Yazdi1ORCID,Lee Jung-Ryul2

Affiliation:

1. Department of Aerospace Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

2. Department of Aerospace Engineering, KAIST, Daejeon 34141, Republic of Korea

3. Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

Abstract

Aerospace thin-walled structures are susceptible to various forms of damage and they can be effectively inspected using Lamb wavefields. However, Lamb wavefields contain at least two dispersive modes which interfere with the generation of a clear image for damage visualization. Conventional mode filters produce inconsistent results due to the need for the ad hoc or manual adjustment of the processing parameters by experienced users. An automatic, adaptive mode filter is proposed to remove human subjectivity, thereby improving the consistency of the results and making it more practical to utilize. It converts the wavefield from the space-time domain to the wavenumber-time domain and then consolidates the data in the time and angular axes into a wavenumber response function (WRF) where the modes can be automatically isolated. The single-mode data were converted back into space-time domain for result visualization. Its effectiveness was experimentally proven by keeping 78.2–122.0% of energy for a wanted mode and suppressing the energy of an unwanted mode to 0.1–4.5%. Its automatic adaptability was demonstrated through the improved visibility of a blind hole, corrosion, water-ingress in honeycomb panel, and impact damage in a complex composite wing. Consistent results can be generated in a highly efficient manner while significantly reducing the computational workload and hardware requirements.

Funder

Industrial Research Grant Scheme through Endowment of Tan Sri Syed Azman Syed Ibrahim

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3