From Raw Data to Practical Application: EEG Parameters for Human Performance Studies in Air Traffic Control

Author:

Zamarreño Suárez María1ORCID,Marín Martínez Juan1ORCID,Pérez Moreno Francisco1,Delgado-Aguilera Jurado Raquel1ORCID,López de Frutos Patricia María2,Arnaldo Valdés Rosa María1ORCID

Affiliation:

1. Department of Aerospace Systems, Air Transport and Airports, School of Aerospace Engineering, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain

2. ATM Research and Development Reference Centre (CRIDA), 28022 Madrid, Spain

Abstract

The use of electroencephalography (EEG) techniques has many advantages in the study of human performance in air traffic control (ATC). At present, these are non-intrusive techniques that allow large volumes of data to be recorded on a continuous basis using wireless equipment. To achieve the most with these techniques, it is essential to establish appropriate EEG parameters with a clear understanding of the process followed to obtain them and their practical application. This study explains, step by step, the approach adopted to obtain six EEG parameters: excitement, stress, boredom, relaxation, engagement, and attention. It then explains all the steps involved in analysing the relationship between these parameters and two other parameters that characterise the state of the air traffic control sector during the development of real-time simulations (RTS): taskload and number of simultaneous aircraft. For this case study, the results showed the highest relationships for the engagement and attention parameters. In general, the results confirmed the potential of using these EEG parameters.

Funder

ATM Research and Development Reference Centre

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference38 articles.

1. Isufaj, R., Koca, T., and Piera, M. (2021). Spatiotemporal Graph Indicators for Air Traffic Complexity Analysis. Aerospace, 8.

2. Wang, Y., Hu, R., Lin, S., Schultz, M., and Delahaye, D. (2021). The Impact of Automation on Air Traffic Controller’s Behaviors. Aerospace, 8.

3. A Flow-Based Flight Scheduler for En-Route Air Traffic Management;Li;IFAC-Pap.,2016

4. Air Traffic Flow Management with Layered Workload Constraints;Mannino;Comput. Oper. Res.,2021

5. A Multidisciplinary Approach of Workload Assessment in Real-Job Situations: Investigation in the Field of Aerospace Activities;Melan;Front. Psychol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3