Model Predictive Control Based on ILQR for Tilt-Propulsion UAV

Author:

Xia JiyuORCID,Zhou Zhou

Abstract

The transition flight of tilt-propulsion UAV is a complex and time-varying process, which leads to great challenges in the design of a stable and robust controller. This work presents a unified model predictive controller, which can handle the full envelope from vertical take-off and landing to cruise flight, to mean that the UAV can achieve a near-optimal transition flight under uncertainty conditions. Firstly, the nonlinear dynamic model of the tilt-propulsion UAV is developed, in which the aerodynamic/propulsion coupling effect of the ducted propeller is considered. Then, a control framework, including global trajectory planning and finite horizon control, is designed. Taking the planned global trajectory as the reference input, a controller is proposed with an inner layer based on ILQR optimization and an outer layer based on feedback correction and forward rolling of the MPC frame. The ILQR-MPC controller has high computational efficiency to deal with nonlinear problems, and has the ability to give full play to UAV’s control ability and suppress uncertainty. Finally, the simulation results show that ILQR-MPC controller obviously performs better than the ILQR feedforward controller, and gains a scheduling PID controller and MPC controller.

Funder

National Defense Fund

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference35 articles.

1. Toward Vehicle-Level Optimization of Compound Rotorcraft Aerodynamics;AIAA J.,2021

2. Aerodynamic/Propulsion Coupling Model of Vector Electric Propulsion System;Acta Aeronaut. Astronaut. Sin.,2022

3. Review of designs and flight control techniques of hybrid and convertible VTOL UAVs;Aerosp. Sci. Technol.,2021

4. Dynamic Transition Corridors and Control Strategy of a Rotor-Blown-Wing Tail-Sitter;J. Guid. Control. Dyn.,2021

5. A new robust adaptive mixing control for trajectory tracking with improved forward flight of a tilt-rotor UAV;ISA Trans.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3