Effect of Lifting Gas Diffusion on the Station-Keeping Performance of a Near-Space Aerostat

Author:

Li Jun,Ling Linyu,Liao Jun,Chen Zheng,Luo Shibin

Abstract

During the long-endurance flight of a near-space aerostat, the characteristics of lifting gas diffusion have a great influence on the flight altitude adjustment and station-keeping performance. Thus, in this study, a lifting gas diffusion model and a dynamic model that consider thermal effects, which had not been studied in similar models before, were developed. The dynamic model and thermal model were validated by historic flight data, and the calculated lifting gas diffusion results were compared with the experimental data of other researchers. The variations in the flight endurance, flight altitude, lifting gas diffusion rate, and diffusion coefficient of a near-space aerostat were analyzed. The effects of the ratio of porosity to tortuosity and envelope radiation properties on the mass of the lifting gas and flight altitude were considered in detail. To analyze the effect mechanism of the ratio of porosity to tortuosity and the envelope radiation properties, the envelope and gas temperature, as well as the gas pressure, were studied. The results show that the lifting gas diffusion rate and diffusion coefficient are very sensitive to the change in the ratio of porosity to tortuosity and envelope temperature. The results obtained from the analysis of the lifting gas diffusion can lay a solid foundation for improving the flight performance of near-space aerostats and for providing improved design considerations for aerostats.

Funder

Key R & D Projects of Hunan Province

National Key Research and Development Program of China

Innovation-Driven Project of Central South University

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3