Innovative Methods to Enhance the Combustion Properties of Solid Fuels for Hybrid Rocket Propulsion

Author:

Chen Suhang,Tang Yue,Zhang Wei,Shen Ruiqi,Yu Hongsheng,Ye Yinghua,DeLuca Luigi T.ORCID

Abstract

The low regression rates for hydroxyl-terminated polybutadiene (HTPB)-based solid fuels and poor mechanical properties for the alternative paraffin-based liquefying fuels make today hybrid rocket engines far from the outstanding accomplishments of solid motors and liquid engines. In this paper, a survey is conducted of several innovative methods under test to improve solid fuel properties, which include self-disintegration fuel structure (SDFS)/paraffin fuels, paraffin fuels with better mechanical properties, high thermal conductivity fuels and porous layer combustion fuels. In particular, concerning HTPB, new results about diverse insert and low-energy polymer particles enhancing the combustion properties of HTPB are presented. Compared to pure HTPB, regression rate can be increased up to 21% by adding particles of polymers such as 5% polyethylene or 10% oleamide. Concerning paraffin, new results about self-disintegrating composite fuels incorporating Magnesium particles (MgP) point out that 15% 1 μm- or 100 μm-MgP formulations increase regression rates by 163.2% or 82.1% respectively, at 335 kg/m2·s oxygen flux, compared to pure paraffin. Overall, composite solid fuels featuring self-disintegration structure appear the most promising innovative technique, since they allow separating the matrix regression from the combustion of the filler grains. Yet, the investigated methods are at their initial stage. Substantial work of refinement in this paper is for producing solid fuels to fulfill the needs of hybrid rocket propulsion.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference39 articles.

1. Highlights in Hybrid Rocket Propulsion, Volume 10 of IWCP ‘In-Space Propulsion’;Altman,2005

2. Energetic Problems in Space Propulsion, Chapter 12, Hybrid Rocket Propulsion;DeLuca,2009

3. Fundamentals of Hybrid Rocket Combustion and Propulsion;Chiaverini,2007

4. Design of Economical Upper Stage Hybrid Rocket Engine;Potter,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3