Rapid Parametric CAx Tools for Modelling Morphing Wings of Micro Air Vehicles (MAVs)

Author:

Rodríguez-Sevillano Ángel Antonio1ORCID,Casati-Calzada María Jesús1ORCID,Bardera-Mora Rafael2,Nieto-Centenero Javier1ORCID,Matías-García Juan Carlos2ORCID,Barroso-Barderas Estela2ORCID

Affiliation:

1. Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio (ETSIAE), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain

2. Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz, 28850 Madrid, Spain

Abstract

This paper shows a series of tools that help in the research of morphing micro air vehicles (MAVs). These tools are aimed at generating parametric CAD models of wings in a few seconds that can be used in aerodynamic studies, either via CFD directly using the model obtained or via wind tunnel through rapid prototyping with 3D printers. It also facilitates the analysis of morphing wings by allowing for the continuous parametric deformation of the airfoils and the wing geometry. In addition, one of the tools greatly simplifies the purely experimental design of this type of vehicle, allowing the transfer of experimental measurements to the computer, generating virtual models with the same deformation as the physical model. This software has two fundamental parts. The first one is the parameterization of the airfoils, for which the CST (Class-Shape Transformation) method will be used. CST coefficients can be modified according to the actuator variable that changes the wing geometry. The second part is the generation of a three-dimensional parametric model of the wing. We used OpenCASCADE technology in its Python version called PythonOCC, which enables the generation of geometries with good surface quality for typical and non-standard wing shapes. Finally, the use of this software for the study of a morphing aircraft will be shown, as well as improvements that could be incorporated in the future to increase its capabilities for the design and analysis of MAVs.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3