Evaluation of Aircraft Environmental Control System Order Degree and Component Centrality

Author:

Liao Junyuan1,Yang Chunxin1ORCID,Yang Han1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Air cycle systems (ACSs) are primarily used in aircraft environmental control systems (ECSs) to provide a suitable cabin temperature and pressure environment for passengers and avionics. It comprises heat exchangers, compressors, turbines, water separators, and various other components that are interconnected to form an information-transmission network. Traditional research on ACSs has focused primarily on their thermal performance. This study abstracted ACSs into network graphs based on their information-transmission characteristics, determined the weight of each information-transmission route using the fuel weight penalty method, calculated and compared the order degree of different ACSs using the structure entropy method, and measured the importance of each component using centrality for the first time. The results showed that the order degree of the ACSs gradually increased with an increase in the number of wheels in the air cycle machine (ACM), and ACSs with high-pressure water separation had a higher order degree under wet conditions than under dry conditions. Moreover, based on the centrality of each vertex in the graphs, the ACM and secondary heat exchanger in the ACS were fundamentally important and should be focused on during the system design. The methodology proposed in this study provides a theoretical basis for the evaluation of the ACS organizational structure and the design performance of components.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference40 articles.

1. Experimental study of particle deposition in the environmental control systems of commercial airliners;Cao;Build. Environ.,2016

2. Linnett, K., and Crabtree, R. (1993). SAE International.

3. Inside the 747-8 New Environmental Control System;Brasseur;Aero-Magazine,2012

4. Hunt, E.H. (1995, January 7–11). Commercial Airliner Environmental Control System Engineering Aspects of Cabin Air Quality. Proceedings of the Aerospace Medical Association Annual Meeting, Anaheim, CA, USA.

5. Weiguo, Z. (2012). Cabin Environment and Air Quality in Civil Transport Aircraft, Cranfield University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3