Constrained Parameterized Differential Dynamic Programming for Waypoint-Trajectory Optimization

Author:

Zheng Xiaobo1ORCID,Xia Feiran1,Lin Defu1,Jin Tianyu1,Su Wenshan2,He Shaoming1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. National Innovation Institute of Defense Technology, Beijing 100071, China

Abstract

Unmanned aerial vehicles (UAVs) are required to pass through multiple important waypoints as quickly as possible in courier delivery, enemy reconnaissance and other tasks to eventually reach the target position. There are two important problems to be solved in such tasks: constraining the trajectory to pass through intermediate waypoints and optimizing the flight time between these waypoints. A constrained parameterized differential dynamic programming (C-PDDP) algorithm is proposed for meeting multiple waypoint constraints and free-time constraints between waypoints to deal with these two issues. By considering the intermediate waypoint constraints as a kind of path state constraint, the penalty function method is adopted to constrain the trajectory to pass through the waypoints. For the free-time constraints, the flight times between waypoints are converted into time-invariant parameters and updated at the trajectory instants corresponding to the waypoints. The effectiveness of the proposed C-PDDP algorithm under waypoint constraints and free-time constraints is verified through numerical simulations of the UAV multi-point reconnaissance problem with five different waypoints. After comparing the proposed algorithm with fixed-time constrained DDP (C-DDP), it is found that C-PDDP can optimize the flight time of the trajectory with three segments to 7.35 s, 9.50 s and 6.71 s, respectively. In addition, the maximum error of the optimized trajectory waypoints of the C-PDDP algorithm is 1.06 m, which is much smaller than that (7 m) of the C-DDP algorithm used for comparison. A total of 500 Monte Carlo tests were simulated to demonstrate how the proposed algorithm remains robust to random initial guesses.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Civilian Aircraft Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3