Thermal Simulations of Drilling of Cryogenic Lunar Soils Containing Water Ice

Author:

Cui Jinsheng1ORCID,Chen Baoxian1,Liu Sibo1,Zhao Deming2ORCID,Zhang Weiwei3

Affiliation:

1. School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China

2. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Water ice is an important water source in lunar polar soil. Drilling and sampling lunar polar soil are important engineering tasks of lunar exploration. In view of the influence of temperature rise on the quality of samples obtained by drilling, the heat transfer and temperature rise in drilled ice-containing lunar soil were investigated. In this study, a thermal simulation model for drilling lunar soil was established based on the discrete element method (DEM). Simulations of the drilling temperature of lunar soil containing ice at 3–5% were performed assuming normal pressure and low temperature. After validating the feasibility and accuracy of the simulation method, the temperatures of the drilling tools and lunar soil were analyzed. Furthermore, drilling in a vacuum was simulated as well, and the results indicated that ice sublimation was negligible for reasonable drilling procedures in the current study.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time temperature prediction of lunar regolith drilling based on ATT-Bi-LSTM network;International Journal of Heat and Mass Transfer;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3